
Nine-moment phonon hydrodynamics based on the modified Grad-type approach:

hyperbolicity of the one-dimensional flow

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 11053

(http://iopscience.iop.org/0305-4470/37/45/021)

Download details:

IP Address: 171.66.16.65

The article was downloaded on 02/06/2010 at 19:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/45
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 11053–11072 PII: S0305-4470(04)80158-6

Nine-moment phonon hydrodynamics based on the
modified Grad-type approach: hyperbolicity of the
one-dimensional flow

Zbigniew Banach1 and Wieslaw Larecki2

1 Department of Fluid Mechanics, Centre of Mechanics, Institute of Fundamental Technological
Research, Polish Academy of Sciences, Swietokrzyska 21, 00-049 Warsaw, Poland
2 Department of Theory of Continuous Media, Institute of Fundamental Technological Research,
Polish Academy of Sciences, Swietokrzyska 21, 00-049 Warsaw, Poland

E-mail: zbanach@ippt.gov.pl and wlarecki@ippt.gov.pl

Received 4 May 2004, in final form 24 September 2004
Published 28 October 2004
Online at stacks.iop.org/JPhysA/37/11053
doi:10.1088/0305-4470/37/45/021

Abstract
After expanding the distribution function about an anisotropic Planck function,
the new moment closure method of Banach and Larecki applied to the
Boltzmann–Peierls equation for the phonon gas dynamics leads to a whole
hierarchy of closed systems of moment equations. The system of equations
for the energy density and the heat flux is the first, non-perturbative member of
this hierarchy of closures. In our previous paper (2004 J. Phys. A: Math. Gen.
37 9805), emphasis was placed on deriving the next member, the 9-moment
anisotropic closure that involves the flux of the heat flux as an extra gas-state
variable. Here, as a first step in effectively analysing this system, we present
a study of the one-dimensional, rotationally symmetric reduction of these
equations. Under the assumption of Callaway’s model, a systematic procedure
is derived which shows that the obtained system of three evolution equations for
three nonvanishing gas-state variables can be cast into a symmetric hyperbolic
form. For the sake of completeness, we describe explicitly the region of
symmetric hyperbolicity in parameter space (the space defined by the gas-state
variables). The evolution system is symmetric hyperbolic for significant ranges
of physical conditions, i.e., there are effectively no unphysical limitations on
the magnitude of the energy density and the heat flux. This paper also deals
with the eigenvalue problem and calculates approximately the characteristic
speeds.
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1. Introduction

Accurate prediction of flows of non-equilibrium phonon gases requires a consideration of the
Boltzmann–Peierls (BP) equation [1–3], which governs the time evolution of the distribution
function describing the number density of phonons at position (xi) having wave vector k. The
mathematical and computational difficulties associated with this equation are well known. It
is therefore of interest to study approximating phonon dynamic systems which are related to
moments of the BP equation. The simplest such system is the system of equations for the
energy density and the heat flux. This system has four equations and is derived, e.g., in [4].

A systematic expansion of the number density of phonons about an anisotropic Planck
function3, following the Banach–Larecki procedure [5], leads to a whole hierarchy of closed
systems of moment equations. The aforementioned system of four equations is the first,
non-perturbative member of this hierarchy of closures. In [5], we have investigated in detail
the next member, the 9-moment anisotropic closure. Denoting by Mij the flux of the heat
flux and by Mij the deviatoric part of Mij , the 9-moment closure yields a system of nine
transport equations with the independent variables being, in addition to the energy density ε

and three components (qi) of the heat flux q, five components of a symmetric tracefree tensor
Mij . Our approach is fundamentally different from a more traditional approach [6] which uses
the equilibrium Planck distribution as the base. The main advantage of using the anisotropic
Planck function is that the heat flux is incorporated into the model in a non-perturbative
manner, thereby allowing virtually arbitrarily large values for the components of this heat flux.
Moreover, with this approach one can describe phenomena at frequencies comparable to the
inverse of the normal time. We consider the case when the effective relaxation time τ̃n for
normal processes is much smaller than the effective relaxation time τr for resistive processes.
During the first time period, the normal time, the number density of phonons relaxes to an
anisotropic Planck function, and then during the longer, resistive time, this number density
settles into an equilibrium Planck distribution. More details on these issues can be found
in [5].

Even under the assumption of Callaway’s model [7], the 9-moment anisotropic closure
forms a rather complicated system of evolution equations. As a first step in effectively
analysing this system, we present here a study of the one-dimensional, rotationally symmetric
reduction of these equations. Since the obtained system of three equations contains only
three gas-state variables, it is then possible to answer the question whether the field equations
governing specific one-dimensional motions are hyperbolic. Clearly, our system will be
hyperbolic in a convex set of gas-state variables if the eigenvalue problem has three real
roots (not necessarily distinct) and if the corresponding eigenvectors span the space of three
dimensions [8–10].

The difficulty associated with solving the eigenvalue problem lies in the complex nature
of the characteristic polynomial, which is due to the fact that the heat flux is not a perturbative
quantity. This difficulty may be overcome by means of an alternative technique, similar
to that employed by Larecki [11, 12] who considered symmetrizable hyperbolic systems
[13, 14]. Given this technique, the present work aims to proceed in two steps. Upon writing
the evolution system in a normal Cauchy form, we first prove that this system admits a family of
left symmetric symmetrizers characterized by three arbitrary functions of gas-state variables.
The second step involves choosing these functions so that the resulting symmetrizer is positive
definite. This is achieved through the use of an approximate expression for the Boltzmann
entropy4. We are then able to conclude that the evolution equations are symmetrizable

3 In [5], this function is also called the quasi-equilibrium Planck distribution.
4 For the details concerning this approximate expression, see our discussion in [5, section 3.4].
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hyperbolic equations [13]. For a physicist, this is especially attractive for at least three
reasons. First, there do exist mathematical proofs that show (local) existence and uniqueness
of solutions to the related Cauchy initial-value problem. Second, symmetric hyperbolic
systems preclude action at a distance and ensure finite speeds. Finally, such systems allow for
the propagation of data that are non-analytic across certain (characteristic) surfaces, which can
be interpreted as wavefronts. A standard reference on these aspects is the book by Courant
and Hilbert [15].

For the sake of completeness, we also specify the region of symmetric hyperbolicity
in parameter space, the space defined by the gas-state variables ε, q1 and M11. Later, in
section 3.5, we decide to introduce the expansion coefficient ϕ0|3 in place of M11. It is
significant that there are effectively no unphysical limitations on the values of the energy
density ε and the magnitude of the nonvanishing component q1 of the heat flux q. However,
since we were forced to make approximations [5] in order to obtain tractable equations, it may
be suspected that the evolution system is not symmetric hyperbolic for all ranges of formally
possible conditions5. In fact, we shall find this suspicion confirmed and shall calculate the
region of symmetric hyperbolicity explicitly. At the same time, it seems important to note
that the transport equations for (ε, q1,M11) or (ε, q1, ϕ0|3) form a symmetrizable hyperbolic
system even beyond the limits of their original derivation (|ϕ0|3| � 1), and indeed this type
of observation is one of the most unexpected features of our approach.

We finally mention the following. A non-perturbative method to derive a hierarchy of
closed systems of moment equations is to use the closure by entropy maximization [16–19].
Unlike the perturbative approaches [20–22], the basic advantage of using this method is that
if one expresses the moment densities and the collision productions in terms of Lagrange
multipliers, the evolution equations for these multipliers are then automatically symmetric
hyperbolic at every order of truncation. However, the difficulty is that various moment
fluxes and collisional terms are impossible to evaluate explicitly as functions of the gas-state
variables. Moreover, cases are known where the method of maximum entropy is ill-defined
in a neighbourhood of equilibrium (quasi-equilibrium) states [18, 23]. This is not a problem
here, but the former difficulty constitutes the biggest obstacle to any practical implementation
of this non-perturbative method.

Our paper is organized as follows. Section 2 is devoted to the study of the one-dimensional,
rotationally symmetric reduction of 9-moment phonon hydrodynamics. The purpose of
section 3 is to transform the evolution system into a quasi-linear, symmetric hyperbolic
form. In section 4, we deal briefly with the eigenvalue problem and calculate approximately
the characteristic speeds by expanding certain nonlinear functions of the gas-state variables
as polynomials with respect to the nonvanishing component q1 of the heat flux. Section 5 is
for discussion and final remarks. Some intermediate calculations are put into the appendix.

2. One-dimensional motions

2.1. Reduction to three gas-state variables

In [5], the equations of 9-moment phonon hydrodynamics were derived using the modified
Grad-type approach. These equations may be written in terms of the energy density ε, the
heat flux qi and the deviatoric part Mij of the flux of the heat flux Mij , as

5 By this we mean the following. In [5], it was assumed that the expansion coefficients ϕ0|3, ϕ0|4
i and ϕ

0|5
ij are small.

Formally, however, the distinguishing feature of the one-dimensional, rotationally symmetric geometry is that the
expansion coefficients ϕ

0|4
i and ϕ

0|5
ij vanish identically and that the expansion coefficient ϕ0|3 may be arbitrary.
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∂tε + ∂iq
i = 0, (2.1a)

∂tq
i + ∂j

(
c2

3
δij ε + Mij

)
= − 1

τr

qi, (2.1b)

∂tM
ij + ∂k

(
2c2

5
δk〈iqj〉 + Mijk

)
= − 1

τr

Mij − 1

τ̃n

(
Mij − 3c

2cε +
√

4c2ε2 − 3|q|2 q〈iqj〉
)

,

(2.1c)

where c is the constant Debye speed, τr = τr(ε) is the effective relaxation time for resistive
processes and τ̃n = τ̃n(ε) is the effective relaxation time for normal processes. As usual, angle
brackets denote the symmetric tracefree part, e.g.,

q〈iqj〉 := qiqj − 1
3 |q|δij . (2.2)

The moment flux Mijk , which is a rank 3 symmetric tracefree tensor, has the form

Mijk = − S

4ε2E
q〈iqj qk〉 − 1

A

[
3B

ε
q〈iMjk〉

− 1

c2ε3D

(
2L qlM

〈i
l qj qk〉 − Q

c2ε2E
Mlmqlqm q〈iqj qk〉

)]
, (2.3)

where the coefficients (A,B,D,E,L,Q, S) depend on (ε, q) according to the relations

A := 1

u2

[
(1 − u)2

2
√

u
ln

(
1 +

√
u

1 − √
u

)
+

1

3
(5u − 3)

]
, A > 0, (2.4a)

u := 3
(
2cε −

√
4c2ε2 − 3|q|2)

2cε +
√

4c2ε2 − 3|q|2 , B := 3 + u

4u

(
8

3
− 5A

)
, (2.4b)

D := 2

3
− A > 0, E := 3(3 − u)A − 4 > 0, (2.4c)

L :=
(

3 + u

4

)3 1

u2

[
15

8
(3 + u)A2 − 13A +

16

3

]
, (2.4d)

Q :=
(

3 + u

4

)5 1

u3

[
45

4
(1 − u2)A3 + 3(19u − 27)A2 − 4(7u − 15)A − 32

3

]
, (2.4e)

S :=
(

3 + u

4

)2 1

u

[
45

2
(1 − u)(3 − u)A2 + 6(39 − 23u)A − 16(9 − 5u)

]
. (2.4f )

The derivation of (2.1) and (2.3) is based on an expansion about a quasi-equilibrium Planck
distribution F. (Alternatively, we call F the anisotropic Planck function.) Since F depends on
the heat flux in a non-perturbative manner, there are effectively no unphysical limitations on
the value of |q|, i.e., one can handle problems with large components of the heat flux. This
is a definite improvement over previous approaches [20–22] which only make allowances
for small deviations in the heat flux from zero. Also, due to the explicit presence of two
relaxation times (τr , τ̃n) in equation (2.1c), the 9-moment system is expected to be a useful
tool in dealing with both normal and resistive processes. Moreover, assuming a separation of
two time scales (τ̃n � τr), one can treat phenomena at frequencies comparable to the inverse
of the normal time. However, since the infinite set of the expansion coefficients (ϕn|m) was
truncated and the moment flux Mijk was approximated by a linear function of Mij , a limitation
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of the 9-moment system is that it is incapable of representing the effects of large departures
from local quasi-equilibrium.

We are now ready to present a study of the one-dimensional, rotationally symmetric
reduction of equations (2.1a)–(2.1c). Prior to that, however, we require some preliminary
definitions. Let vi be defined by

vi := 3 + u

4cε
qi = 3

2cε +
√

4c2ε2 − 3|q|2 qi. (2.5)

From (2.4b) and (2.5) it follows that

u = δij v
ivj = (v1)2 + (v2)2 + (v3)2. (2.6)

Upon introducing the useful quantity

Nij := Mij − 4c2ε

3 + u
v〈ivj〉 = Mij − 3c

2cε +
√

4c2ε2 − 3|q|2 q〈iqj〉 (2.7)

and setting Mijk := Mijk , equations (2.3)–(2.7) enable us to obtain the identity

Mijkv
ivj vk = cu

[
6c2ε

5(3 + u)
Gu2 − I

E
Nijv

ivj

]
, (2.8)

where

G := 1

2u

[
8

3
− 5(1 − u)A

]
, I := 3

u
[3(3u − 5)A + 4(2 − u)]. (2.9)

For further details, including a derivation of (2.8), the reader is referred to [5, appendix B].
As noted already in the introduction, the equations of 9-moment phonon hydrodynamics

are not easy to analyse, and the difficulty in analysing these equations lies in the complicated
structure of the moment flux and collisional terms [5]. In order to examine the hyperbolicity
question, it is very tempting to try deriving evolution equations with the same basic features
as the original ones, but simpler to study. For our purposes, a considerable but nontrivial
simplification can be achieved by assuming the one-dimensional, rotationally symmetric
geometry. In this geometry, all gas-state variables are functions of time and a single spatial
coordinate x := x1. The heat flux in the x-direction q(t, x) may vary (q := q1); the heat fluxes
q2, q3 in the orthogonal directions are set equal to zero (q2 = q3 = 0). A rank 2 symmetric
tracefree tensor Mij specializes to M11 = −2M22 = −2M33. For essentially one-dimensional
problems, i.e., problems with rotational symmetry about the x-axis, there are no off diagonal
components of Mij . As regards the moment flux Mijk which is a rank 3 symmetric tracefree
tensor [5], we can use the component M111 as a basis for the representation of this moment
flux. Here, it is convenient to introduce the change of variables

m := 3
2 M11, M := 3

2 M111. (2.10)

These new variables will be of interest to us subsequently.
With these observations in mind, equations (2.1a)–(2.1c) reduce to a system of three

equations for (ε, q,m):

∂t ε + ∂xq = 0, (2.11a)

∂t q + ∂x

(
c2

3
ε +

2

3
m

)
= − 1

τr

q, (2.11b)

∂t m + ∂x

(
2c2

5
q + M

)
= − 1

τr

m − c2ε

τ̃n

N, (2.11c)
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where

N := m

c2ε
− 4u

3 + u
. (2.12)

Here, in view of q2 = q3 = 0 and q := q1, we have

u = |v|2 = (v)2, (2.13)

where

v := v1 = 3

2cε +
√

4c2ε2 − 3|q|2
q (v2 = v3 = 0). (2.14)

There remains, however, an additional quantity M corresponding to the moment flux Mijk . In
order for system (2.11) to be a determined system of equations for (ε, q,m), it is necessary
that M is uniquely characterized by specifying (ε, q,m). Implicitly, much of the analysis of
the one-dimensional, rotationally symmetric reduction of the equations of 9-moment phonon
hydrodynamics has been presented in [5, appendix B]. There, the concrete nonlinear expression
for Mijkv

ivj vk , equation (2.8), was derived. With the aid of this expression, we easily find
that M can be related to (ε, q,m) by means of the following formula6:

M = c3εv

3 + u

[
9

5
Gu − I

E
(3 + u)N

]
. (2.15)

In the one-dimensional geometry, the quantities Mijkv
ivj vk and Nijv

ivj may be rewritten
as Mijkv

ivj vk = 2Muv/3 and Nijv
ivj = 2c2εNu/3. Then, since u = |v|2 = (v)2,

equation (2.8) simplifies to yield (2.15). System (2.11), in conjunction with equations (2.12)–
(2.15), (2.4c), (2.9) and (2.4a), forms a closed set of equations from which the evolution of
(ε, q,m) can in principle be determined.

Starting from the kinetic-theory definitions of ε and q, we verify that q is subject to
the condition |q| < cε (see [5, footnote 5]). Inserting this condition into (2.14) yields the
additional constraints of the form

|v| < 1, u < 1. (2.16)

For a fixed value of ε, the variation of v with q, in the range −cε < q < cε, is monotonic.
This is proved by noting that, from (2.14), ∂v/∂q > 0. The quantities v and u vanish at q = 0,
and the variations of A and E with u are such that

0 < A < 2
3 , E > 0. (2.17)

(Regarding the proof of (2.17), see [5, section 3.4].) Moreover, in the limit u → 0+, we
obtain [5]

A = 8
15 , E = 4

5 , G = 8
7 , I = − 36

35 . (2.18)

In the light of these observations, we may say that the quantities appearing in (2.15) are regular
functions of ε and q.

2.2. Evolution equations in first-order quasi-linear form

On account of the fact that system (2.11) is written in divergence form, it will (by analogy
with physical laws) be said to be expressed in generalized conservation form. It is in strict
conservation form when τ−1

r = τ̃−1
n = 0, for non-zero terms with τ−1

r and τ̃−1
n correspond

to the occurrence of either generalized sources or productions. Our purpose here is to show

6 Formally, in the limit u → 1−, we obtain G = 4/3 and I/E = −3.
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that equations (2.11a)–(2.11c) can be written as a first-order, quasi-linear system. However,
in order to derive this system, we need to introduce the following auxiliary formulae:

∂v

∂ε
= − v(3 + u)

ε(3 − u)
,

∂v

∂q
= (3 + u)2

4cε(3 − u)
, (2.19a)

∂u

∂ε
= −2u(3 + u)

ε(3 − u)
,

∂u

∂q
= v(3 + u)2

2cε(3 − u)
, (2.19b)

dA

du
= 8 + 3(u − 5)A

6u(1 − u)
, u → 0+ ⇒ dA

du
= 8

105
. (2.19c)

Direct differentiation of (2c2/5)q + M with respect to x then gives

∂x

(
2c2

5
q + M

)
= 3

2
c3a ∂x ε +

3

2
c2b ∂x q + cd ∂x m, (2.20)

where

a := −v[9(5 + u)A2 − 84A + 32]

3(3 − u)A − 4
+

v(3 + u)

3 − u
YN, (2.21a)

b := 81(1 + u)A2 − 12(21 + 2u)A + 112

3[3(3 − u)A − 4]
− (3 + u)2

4(3 − u)
YN, (2.21b)

d := −3[3(3u − 5)A + 4(2 − u)]

v[3(3 − u)A − 4]
(2.21c)

and 3(3 − u)A − 4 > 0 (see (2.4c)). In (2.21a) and (2.21b), the quantity Y is defined by

Y := 9[9(u2 − 2u + 5)A2 − 24(1 + u)A + 16u]

u[3(3 − u)A − 4]2
. (2.22)

For any fixed value of ε > 0, as q moves towards 0, one can prove that

Y = −9

7
, a = 0, b = 4

15
+

27

28

m

c2ε
, d = 0. (2.23)

In addition to this, the investigation of (2.22) yields the following result (see the appendix):
Y as a function of u satisfies the inequality Y < 0. One of the main applications of this
inequality is to the discussion of the hyperbolicity question (see sections 3.4 and 3.5).

Before explicitly showing that equations (2.11a)–(2.11c) can be cast into a first-order
quasi-linear form, it is both natural and convenient to define (wi), (Pi) and (Bij ) by

(wi) := (ε, q,m), (2.24a)

(Pi) :=
(

0,− 1

τr

q,− 1

τr

m − c2ε

τ̃n

N

)
, (2.24b)

(Bij ) :=

 0 1 0

c2/3 0 2/3
3c3a/2 3c2b/2 cd


 , (2.24c)

where, of course, i, j = 1, 2, 3. Let δij be the Kronecker delta. Then the introduction of the
above notation enables system (2.11) to be written as

δij ∂tw
j + Bij ∂xw

j = Pi (i = 1, 2, 3). (2.25)
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(Here and throughout this paper, we adopt the summation convention whereby a repeated
index implies summation over all values of that index. Setting δij := δij , the indices such as
i and j will be raised and lowered with δij and δij , respectively.)

Since Bij and Pi are functions of (wi) only, system (2.25) is a first-order, quasi-linear
system as it stands. This system will be the starting point for our further investigations.

3. Symmetric hyperbolicity

3.1. Left symmetric symmetrizers

The most general symmetric 3 × 3 matrix has the form

(Sij ) :=

S11 S12 µ

S12 S22 ν

µ ν ρ


 . (3.1)

Here we have used the notation

µ := S13, ν := S23, ρ := S33. (3.2)

Assume the entries of (Sij ) are functions of (wi). Also, suppose (Sij ) is non-singular:
det(Sij ) �= 0. Premultiplying the equation

δkj ∂tw
j + Bkj ∂xw

j = Pk (3.3)

by

S k
i := Sil δ

lk (3.4)

and employing the summation convention, we find that

Sij ∂tw
j + Cij ∂xw

j = Qi (i = 1, 2, 3), (3.5)

where

Cij := S k
i Bkj , Qi := S k

i Pk. (3.6)

This set of evolution equations is equivalent to system (2.25).
For essentially obvious reasons, system (3.5) will be symmetric if the entries of (Cij )

satisfy the conditions

Cij = Cji (i, j = 1, 2, 3). (3.7)

Assuming that the introduction of (Sij ) gives us precisely these conditions, we call (Sij ) a left
symmetric symmetrizer. If (Sij ) is a left symmetric symmetrizer, then the entries of (Sij ) are
characterized by

S11 = 1
2 c2

[
µ + cν(3a − d) − 3

(
µ − 1

2 c2ρ
)
b
]
, (3.8a)

S12 = 1
2 c

(
cν + 9

2 c2ρa − 3µd
)
, (3.8b)

S22 = 3
2

(
µ + 3

2 c2ρb − cνd
)
. (3.8c)

Ignoring for the moment the condition det(Sij ) �= 0, we are justified in saying that µ, ν and
ρ are arbitrary functions of (wi). Consequently, equations (3.1) and (3.8) define not a single
symmetrizer, but a whole family of symmetrizers.

Since one can change the symmetrizer by changing the functions (µ, ν, ρ), it is desirable
to take advantage of this freedom to make the symmetrizer positive definite for significant
ranges of physical conditions. Then applying (Sij ) to equations (2.25) yields a symmetric
hyperbolic system of the form (3.5) (with non-zero sources), so the existence and uniqueness
results of [13] hold. These and similar issues are discussed in the text below.
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3.2. A positive-definite symmetrizer

An interesting symmetrizer is obtained by setting

µ = 4u

3c2
, ν = −2v

c3
, ρ = 3 − u

3c4
. (3.9)

It then follows immediately from (2.21) and (3.8) that the remainder of specification of the
symmetrizer is straightforward:

S11 = 1

12

[
27(1 + 5u)A − 4(16u + 3) − 9

4
(1 + 3u)Z

]
, (3.10a)

S12 = − v

4c
[9(5 + u)A − 20 − 3Z], (3.10b)

S22 = 3

4c2

[
9(1 + u)A − 4 − 1

4
(3 + u)Z

]
. (3.10c)

As regards the meaning of Z, this quantity is defined in terms of N by

Z := (3 + u)YN. (3.11)

For the phonon gas described by (ε, q,m), a quasi-equilibrium state is the one in which N = 0;
equivalently, we have (see (2.12))

m = 4c2εu

3 + u
. (3.12)

In quasi-equilibrium, it may thus be concluded that the quantity Z vanishes.
In order to prove that the symmetrizer characterized by (3.9) and (3.10) is positive

definite, we first consider the case of quasi-equilibrium. If N = 0, the matrix (Sij ) has an
inverse, (Rij ):

RikSkj = δi
j , SikR

kj = δ
j

i . (3.13)

Clearly, this inverse is symmetric, in the sense that

Rij = Rji (i, j = 1, 2, 3). (3.14)

Using the notation

R̄ij := 3E

(1 − u)2
Rij , (3.15)

we get

R̄11 = 6
∫ 1

−1

1

(1 − vσ)5
dσ = 12(1 + u)

(1 − u)4
, (3.16a)

R̄12 = 6c

∫ 1

−1

σ

(1 − vσ)5
dσ = 4c(5 + u)v

(1 − u)4
, (3.16b)

R̄13 = 3c2
∫ 1

−1

3σ 2 − 1

(1 − vσ)5
dσ = 24c2u

(1 − u)4
, (3.16c)

R̄22 = 6c2
∫ 1

−1

σ 2

(1 − vσ)5
dσ = 4c2(1 + 5u)

(1 − u)4
, (3.16d)
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R̄23 = 3c3
∫ 1

−1

σ(3σ 2 − 1)

(1 − vσ)5
dσ = 8c3(1 + 2u)v

(1 − u)4
, (3.16e)

R̄33 = 3c4

2

∫ 1

−1

(3σ 2 − 1)2

(1 − vσ)5
dσ = 3c4[9(1 − u)2A + 4(3u − 1)]

(1 − u)4
. (3.16f )

Now, let (α1, α2, α3) be the set consisting of three real numbers satisfying the condition
δijαiαj �= 0. For each (α1, α2, α3) with the above property, an elementary calculation leads
directly to the result

Rij αiαj = (1 − u)2

2E

∫ 1

−1

B 2

(1 − vσ)5
dσ, (3.17)

in which B is defined by

B := 2α1 + 2cσα2 + c2(3σ 2 − 1)α3. (3.18)

Since |v| = √
u < 1 and E > 0, this result implies that the matrix (Rij ) is positive definite.

The rest of the argument is easy. Given that (Rij ) is an inverse of (Sij ), it follows from (3.13)
that the matrix (Sij ) is also positive definite. Because of this last statement, system (3.5) is
verified to be (algebraically) symmetric hyperbolic for all quasi-equilibrium states.

Passing now to the general case (N �= 0), we need one concept from linear algebra.
Namely, the matrix (Sij ) is positive definite if and only if the determinant of each leading
principal minor is positive [24]. For (Sij ), there are three determinants defined by

D1 := S11, (3.19a)

D2 := S11S22 − (S12)
2, (3.19b)

D3 := det(Sij ). (3.19c)

In a quasi-equilibrium state (N = 0), the matrix (Sij ) is positive definite and we have the
inequalities

Di > 0 (i = 1, 2, 3). (3.20)

Thus, since (Di ) are continuous functions of (wi), there exists a neighbourhood of a quasi-
equilibrium state such that the determinants (Di ) are positive. This conclusion holds for every
quasi-equilibrium state. In other words, we have demonstrated that system (3.5) is certainly
symmetric hyperbolic in the neighbourhood of quasi-equilibrium, i.e., in the range where
relation (2.15) is valid.

Of course, we expect that system (3.5) cannot be symmetric hyperbolic irrespective of
how far from quasi-equilibrium the state is, and in order to calculate the region of symmetric
hyperbolicity in parameter space (the space defined by either ε, q,m or ε, q, ϕ0|3), we must
propose a more detailed investigation of the conditions Di > 0. A full treatment of these
conditions is given in section 3.4. Subsequently, section 3.5 proposes the passage from
(ε, q,m) to (ε, q, ϕ0|3), which is a diffeomorphic change of variables, and also derives the
symmetric hyperbolic system for (ε, q, ϕ0|3). In section 3.3, we turn our attention to an
approximate expression for the Boltzmann entropy and then show that this expression is of
direct physical relevance to the specification of (µ, ν, ρ) via (3.9).

3.3. Relation to the approximate kinetic entropy

Neglecting in [5, equation (3.51)] the terms that involve the expansion coefficients other than(
ϕ0|3, ϕ0|4

i , ϕ
0|5
ij

)
, an approximate expression for the Boltzmann entropy is given by

s = sF

[
1 − E

8(3 − u)
(ϕ0|3)2 − 3

4
uDδijϕ

0|4
i ϕ

0|4
j − 3

8
Aδij δklϕ

0|5
ik ϕ

0|5
j l

]
, (3.21)
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where

sF := 4kBε


(
1 − u

3 + u

)
, 
 := χ

ε1/4

(3 + u)1/4

(1 − u)3/4
, χ :=

(
π2

30c3h̄3

)1/4

. (3.22)

As usual, we denote by kB the Boltzmann constant and by h̄ the Planck constant divided by
2π . For the one-dimensional, rotationally symmetric geometry, as a consequence of formulae
[5, (4.6a)–(4.6c)], we easily verify that the expansion coefficients

(
ϕ

0|4
i , ϕ

0|5
ij

)
vanish

identically,

ϕ
0|4
i = 0, ϕ

0|5
ij = 0, (3.23)

and that the quantities ϕ0|3 and N are related by

ϕ0|3 = − (9 − u2)N

3(1 − u)E
. (3.24)

Then (3.21) may be written in the form

s = kBε


[
4(1 − u)

3 + u
− 9 − u2

18(1 − u)

N2

E

]
. (3.25)

Here, as with the formula for sF , 
 is defined by (3.22).
Evaluating the right-hand side of

Hij :=
(

∂2s

∂wi∂wj

)
N=0

(3.26)

requires7 a twice differentiable evaluation of the scalar function s in terms of (wi) := (ε, q,m).
Of course, such an evaluation of s = s(wi) is going to be quite complicated, but this is the
price to be paid for the structural simplicity that emerges below. Indeed, a tedious calculation
using (2.12), (2.4c), (3.22) and (2.19b) shows that for every quasi-equilibrium state one has

(Hij ) = −kB


3εE

(
3 + u

1 − u

)
(Sij ) (i, j = 1, 2, 3), (3.27)

where (Sij ) has exactly the same meaning as in section (3.2), i.e., (Sij ) is derived from (3.9)
and (3.10) by substituting Z = 0 into (3.10a)–(3.10c). Hence we find that (Hij ) is a negative-
definite matrix. In problems where N = 0, this matrix can be used to define (Sij ) without
appeal to the algebraic construction of sections 3.1 and 3.2.

Now, with the aid of (3.2), we obtain for the basic matrix elements (H13,H23,H33) the
following formulae:

H13 = −kB


3εE

(
3 + u

1 − u

)
µ, (3.28a)

H23 = −kB


3εE

(
3 + u

1 − u

)
ν, (3.28b)

H33 = −kB


3εE

(
3 + u

1 − u

)
ρ. (3.28c)

These formulae clearly show the connection between (H13,H23,H33) and (µ, ν, ρ). This
is essential because, as explicitly seen in sections 3.1 and 3.2, the functions (µ, ν, ρ) given
by (3.9) are relevant to our algorithm for defining a positive-definite symmetrizer (Sij ) for
system (2.25).

7 We set m = 4c2εu/(3 + u) in ∂2s/∂wi∂wj . Consequently, the entries of (Hij ) are independent of m and (Hij ) is
not exactly the same thing as the Hessian matrix of s = s(wi).
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The above discussion has laid out the physical framework of the algebraic construction
of positive-definite symmetrizers. However, an important issue concerning how to find the
symmetrizer (if it does exist) which is a positive-definite (negative-definite) Hessian matrix
of some scalar function of (wi) still remains to be addressed. Note that the positive-definite
symmetrizer (Sij ) defined in section 3.2 is not a symmetrizer of this type. Also, the Hessian
matrix of s = s(wi) is not a left symmetric symmetrizer for system (2.25).

3.4. The region of symmetric hyperbolicity

Let (Sij ) be the symmetrizer characterized by (3.1), (3.9) and (3.10). As before, suppose
that (D1,D2,D3) are the determinants of leading principal minors. Here, we recall that these
determinants are given by (3.19). Define (E1, E2, E2) by

E1 := 12D1, E2 := 16c2D2, E3 := 256c6

9(1 − u)2(3 − u)
D3. (3.29)

In agreement with the discussion of section 3.2, one obtains

E1 > 0, E2 > 0, E3 > 0 (3.30)

as necessary and sufficient conditions for a symmetrizer, (Sij ), to be positive definite.
The quantities (E1, E2, E3) can be written explicitly. Evidently, using (3.29), (3.19a) and

(3.10a), we verify that E1 is simply

E1 = 27(1 + 5u)A − 4(16u + 3) − 9
4 (1 + 3u)Z. (3.31)

Setting

Z0 := 4[27(1 + 5u)A − 4(16u + 3)]

9(1 + 3u)
(Z0 > 0), (3.32)

we find that E1 > 0 if and only if the following condition is satisfied:

Z < Z0. (3.33)

It is easy to confirm that Z0 > 0 because E1 = 27(1 + 5u)A− 4(16u + 3) > 0 if Z = 0. Given
(3.29) as well as (3.19c) and (3.10), the explicit form of E3, on the other hand, appears at first
sight rather complicated, being

E3 = Z2 − 8E

3 − u
Z +

16E2

3(3 − u)
. (3.34)

However, a little algebra shows that it simplifies to

E3 = (Z − Z1)(Z − Z2), (3.35)

where

Z1 := 4E

3(3 − u)
(3 −

√
3u) (Z1 > 0), (3.36a)

Z2 := 4E

3(3 − u)
(3 +

√
3u) (Z2 � Z1). (3.36b)

Then we have E3 > 0 if Z < Z1. The inequality E3 > 0 also arises when Z > Z2, but the
reader will verify that in this case it is not possible to guarantee that Z < Z0.

It only remains to calculate the quantity E2 and interpret the inequality E2 > 0. With the
aid of (3.29), (3.19b) and (3.10), the required expression for E2 is readily seen to be

E2 = 27
16 (1 − u)2 Z2 − 1

2 [81(1 − u)2A − 4(8u2 − 21u + 9)]Z

+ 3[9(1 − u)2A + 4(3u − 1)]E. (3.37)
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Since E2 is a function of u and Z (see (2.4a) and (2.4c)),

E2 = E2(u, Z), (3.38)

this function can be evaluated at Z = Z1 and Z = Z2; in detail, we have

E2(u, Z1) = 16E

√
u3

3

[
(
√

3 − √
u)(

√
3 + 2

√
u)

3 − u

]2

, (3.39a)

E2(u, Z2) = −16E

√
u3

3

[
(
√

3 +
√

u)(
√

3 − 2
√

u)

3 − u

]2

. (3.39b)

Hence we conclude that E2(u, Z1) and E2(u, Z2) obey the conditions

E2(u, Z1) � 0, E2(u, Z2) � 0. (3.40)

Evaluating E2(u, Z) at Z = 0 and Z = Z0 gives8

E2(u, 0) = 3[9(1 − u)2A + 4(3u − 1)]E, (3.41a)

E2(u, Z0) = −u [9(5 + u)A − 20 − 3Z0]2 . (3.41b)

Knowing that E > 0 and E2(u, 0) > 0, from these formulae it follows at once that

9(1 − u)2A + 4(3u − 1) > 0, E2(u, Z0) � 0. (3.42)

The essential thing to note here is that the quantity E2(u, Z0) is not positive.
Clearly, the equation E2(u, Z) = 0 is a quadratic equation for Z, yielding two real values

(Z3, Z4) which may be regarded as functions of u:

E2(u, Z) = 27
16 (1 − u)2(Z − Z3)(Z − Z4). (3.43)

Without any loss of generality, we assume that

Z3 � Z4. (3.44)

Now, by what has been said above, it is not difficult to verify that the values of Z0, Z1, Z2, Z3

and Z4 are restricted by the inequalities

Z3 � Z0 � Z4, (3.45a)

0 < Z1 � Z3 � Z2 � Z4. (3.45b)

Given these inequalities, our basic result can be stated very neatly. If Z < Z1, then the matrix
(Sij ) is positive definite. Using (2.12) and (3.36a) and remembering that Z := (3 + u)YN

and Y < 0 (see equation (2.22) and the appendix), one finds that the condition Z < Z1 is
equivalent to the inequality

m >
4c2εu

3 + u
− 4c2ε(3 − √

3u)E

3(9 − u2)|Y | . (3.46)

Since the quantities (u,E, Y ) depend only on u and u is an explicit function of (ε, q) (see
(2.4c), (2.4a), (2.22), (2.13) and (2.14)), this last inequality plus an obvious bound of the form

|q| < cε (3.47)

8 For Z = Z0, we have S11 = 0,D2 = −(S12)
2 and E2 = −(4cS12)

2. This explains why E2(u, Z0) can be written
in the form (3.41b).
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define precisely the region of symmetric hyperbolicity in the (ε, q,m)-space, i.e., the region
for which system (3.5) is symmetric hyperbolic. It is then easy to explain why equations (2.25)
form a hyperbolic system when Z < Z1.

We denote the aforementioned region by W . Note that W is a convex subset of R
3.

Another important observation is that every quasi-equilibrium state is contained in W:

4c2εu

3 + u
>

4c2εu

3 + u
− 4c2ε(3 − √

3u)E

3(9 − u2)|Y | . (3.48)

We also mention the following. In the case when

N := m

c2ε
− 4u

3 + u
� 0, (3.49)

there are effectively no mathematical limitations on the magnitude of N as condition (3.46) is
then satisfied automatically. The inequality Z < Z1 and the equivalent condition (3.46) give
only an estimate of the domain of symmetric hyperbolicity. Needless to say, this estimate
does not enable us to conclude that the original system (2.25) is necessarily non-hyperbolic in
the region where Z � Z1. Whether system (2.25) is non-hyperbolic for Z � Z1 is an open
problem that remains to be seen.

3.5. Transformation of gas-state variables

Since the solution for m of equations (2.12) and (3.24) has the form

m = c2ε

3 + u

[
4u − 3(1 − u)

3 − u
Eϕ0|3

]
, (3.50)

the passage from (ε, q,m) to (ε, q, ϕ0|3) is a diffeomorphic change of gas-state variables.
Remembering that (wi) := (ε, q,m) and abbreviating (ε, q, ϕ0|3) as (ωi), we can use (3.50),
(2.4c) and (2.19) to derive the following formulae:

∂tw
i = Di

j ∂tω
j , ∂xw

i = Di
j ∂xω

j , (3.51)

where

(
Di

j

)
:=


1 0 0

0 1 0
ϑ ξ γ


 , γ := − 3c2ε(1 − u)

9 − u2
E, (3.52a)

ϑ := − 4c2u

3 − u
− 18c2

(3 − u)3
[3(3 − u)2A − 2(7 − 4u + u2)]ϕ0|3, (3.52b)

ξ := 6cv

3 − u
− 3c

4v(3 − u)3
[3(u2 − 10u − 15)(3 − u)2A + 8(27 − 5u2 + 2u3)]ϕ0|3. (3.52c)

The coefficients (ϑ, ξ, γ ) tend to the limits

ϑ = −4c2

15
ϕ0|3, ξ = 0, γ = −4c2ε

15
(3.53)

as q approaches 0. A little algebra, aided by γ < 0, yields det
(
Di

j

) = γ < 0. Hence we
conclude that the matrix

(
Di

j

)
is non-singular if |q| < cε.

Using (3.5) and (3.51), and the fact that the entries of (Sij ), (Cij ) and (Qi) can be
expressed as functions of (ωi), the system of equations for (ωi) reads

SklD
l
j ∂tω

j + CklD
l
j ∂xω

j = Qk (k = 1, 2, 3). (3.54)
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Suppose, given

Z := (3 + u)YN = −3(1 − u)

3 − u
EYϕ0|3, (3.55)

that (Sij ) is defined as in section 3.2. Then the matrix (Cij ) is symmetric and the matrix (Sij )

is symmetric and positive definite. Now, if we premultiply (3.54) by Dk
i and employ the

summation convention, we arrive at

Eij ∂tω
j + Fij ∂xω

j = Ui (i = 1, 2, 3), (3.56)

where

Ui := Dk
iQk, Eij := Dk

iSklD
l
j , Fij := Dk

iCklD
l
j . (3.57)

Elementary inspection shows that

Eij = Eji, Fij = Fji. (3.58)

Also, we have

Eijα
iαj = Skl

(
Dk

iα
i
)(

Dl
jα

j
)

> 0 (3.59)

if δijα
iαj �= 0. Because of (3.58) and (3.59), system (3.56) is symmetric hyperbolic.

Using (3.47) as well as (3.46) and (3.50), the region for which system (3.56) is symmetric
hyperbolic is characterized by

|q| < cε, ϕ0|3 < � := 4(3 − √
3u)

9(1 − u)|Y | . (3.60)

If ϕ0|3 < 0, the second condition in (3.60) is satisfied automatically. For any fixed value of ε,
as q approaches 0, one can show that ϕ0|3 < � = 28/27. In the limit |q| → (cε)−, one obtains
ϕ0|3 < � = ∞. Consequently, the differential equations for (ε, q, ϕ0|3) form a symmetric
hyperbolic system even beyond the limits of their original derivation (|ϕ0|3| � 1), and indeed
this type of observation is one of the most unexpected features of the one-dimensional reduction
of the equations of 9-moment phonon hydrodynamics.

4. Characteristic speeds

Hyperbolicity of equations (2.25) can be investigated by examining the eigenstructure of (Bij )

(see (2.24c)). These equations are hyperbolic if the eigenvalues of (Bij ) are all real and
their corresponding eigenvectors are distinct. As is well-recognized (see, e.g., [25]), any
real n × n matrix (Bij ) has n real eigenvalues and n linearly independent eigenvectors if and
only if it has a real positive-definite left symmetrizer. Therefore, the explicit construction of
such a symmetrizer in section 3 suffices to guarantee that equations (2.25) are hyperbolic
in W . For the waves of weak discontinuity, an eigenvalue describes the characteristic
wavespeed of propagation, the corresponding right eigenvector gives the hydrodynamic or
quasi-hydrodynamic quantities transported by the wave and the left eigenvector prescribes
the strength of the disturbance. In an analysis of system (2.25), the following characteristic
equation is obtained:

det(Bij − cλδij ) = 0, (4.1)

where λ is an eigenvalue divided by c. An equivalent statement to (4.1) is, of course, a cubic
equation of the form

P(λ) := −λ3 + dλ2 +
(

1
3 + b

)
λ + a − 1

3 d = 0. (4.2)
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Before proceeding further, let us define � by

� := −[
1
3

(
1
3 + b

)
+

(
1
3 d

)2]3
+

[
1

27 d3 + 1
6 d

(
1
3 + b

)
+ 1

2

(
a − 1

3 d
)]2

. (4.3)

The quantity � has an especial interest. In the region W where equations (2.25) transform
into a symmetric hyperbolic system, it satisfies the inequality � � 0, one consequence of
which is that the zeros (λ1, λ2, λ3) of the cubic polynomial P(λ) are real.

In principle, it is possible to derive analytic expressions for (λ1, λ2, λ3) in terms of
(ε, q,N), but these expressions are not very instructive. To get a sense of how the roots of
P(λ) = 0 behave for small values of N (i.e., in a neighbourhood of quasi-equilibrium states),
we employ a polynomial approximation to

λi = λi(ε, q,N) (i = 1, 2, 3). (4.4)

To the lowest nontrivial order in N, this approximation implies that

λi = ηi + κiN + O(N2), (4.5)

where ηi and κi are functions of (ε, q). Denoting by (ao, bo) those parts of (a, b) which do
not depend on N, we can write equations (2.21a) and (2.21b) in the form

a = ao +
v(3 + u)

3 − u
YN, b = bo − (3 + u)2

4(3 − u)
YN. (4.6)

Since (η1, η2, η3) are the zeros of

Po(η) := −η3 + dη2 +
(

1
3 + bo

)
η + ao − 1

3 d = 0, (4.7)

we conclude that to a first approximation

P(λi) = 1

4

{
4

3

(
1 + 3bo + 6dηi − 9η2

i

)
κi +

3 + u

3 − u
[4v − (3 + u)ηi]Y

}
N + O(N2). (4.8)

The above formula for P(λi) will be consistent with the equation P(λi) = 0 if the coefficient
in front of N vanishes. Then the quantity κi can be evaluated; it turns out to be

κi = − 3(3 + u)[4v − (3 + u)ηi]Y

4(3 − u)
(
1 + 3bo + 6 dηi − 9η2

i

) . (4.9)

Here ηi is a solution for η of the equation Po(η) = 0.
Comparatively simple results are obtained only when the absolute value of z := q/(cε) is

much smaller than 1. For if |z| � 1, one can expand all functions of z as polynomials. When
this expansion technique is applied to Po(ηi), the equation Po(ηi) = 0 gives

η1 = 1

5

√
15 +

3

14
z − 9

490

√
15z2 +

447

5488
z3 + O(z4), (4.10a)

η2 = −1

5

√
15 +

3

14
z +

9

490

√
15z2 +

447

5488
z3 + O(z4), (4.10b)

η3 = 15

28
z +

3417

21 952
z3 + O(z4), (4.10c)

and then

κ1 = 9

56

√
15 − 585

1568
z + O(z2), (4.11a)

κ2 = − 9

56

√
15 − 585

1568
z + O(z2), (4.11b)

κ3 = 585

784
z + O(z2). (4.11c)
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We now see clearly the following. The characteristic speeds depend on the non-equilibrium
state characterized by the values of z and N. In equilibrium (z = N = 0), equation (4.2)
degenerates into a trivial equation

−λ

(
λ2 − 3

5

)
= 0, (4.12)

so that the characteristic speeds are 0 and ±√
15c/5.

5. Discussion and final remarks

Our method can be used to present a systematic derivation of a whole hierarchy of closed
systems of moment equations. The system of equations for the energy density and the heat
flux is the basic, non-perturbative member of this hierarchy of closures [4]. In [5], we have
investigated in detail the next member, the 9-moment closure model. The one-dimensional,
rotationally symmetric reduction of this model appears to be an interesting one as it reveals a
nontrivial system of three evolution equations which, for a well-defined region of parameter
space, is a symmetrizable hyperbolic system.

As is well-recognized, the method of maximum entropy leads automatically to a hierarchy
of moment closure systems, each of which possesses an entropy and is symmetric hyperbolic
[16–19]. However, the difficulty is that explicit closed-form expressions for the coefficients of
the maximum-entropy distribution function in terms of the moments prove to be impossible to
obtain. Moreover, cases are known where the equilibrium states are located on the boundary
of the domain of definition of the maximum-entropy system [18, 23]. These complications do
not arise in the Grad-type approach [20, 21]. Therefore, despite the disadvantage concerning
non-positivity of the approximate distribution function, the perturbative expansion technique
seems to be favourable.

The present study was inspired by the work of Groth et al [26, 27]. Within the
framework of classical kinetic theories, these authors considered using an expansion about an
ellipsoidal distribution function (EDF) as opposed to the expansion based on perturbations
to a Maxwellian. The use of the EDF accounts for arbitrary pressure anisotropies and
hyperbolicity of the moment closure system is possible for a well-defined region of
parameter space. In fact, their closure technique may be regarded as a practical compromise
between the non-perturbative method of Levermore [17] and standard perturbative methods
[20, 21].

In [5], the equations of 9-moment phonon hydrodynamics were derived by expanding
about an anisotropic Planck function and including the flux of the heat flux in the expansion.
This moment closure prescription is very much analogous to that based on an expansion
about an EDF. Note that the basic advantage of using the anisotropic Planck function is that
the heat flux is incorporated into the model in a non-perturbative manner, thereby allowing
virtually arbitrarily large values for the components of this heat flux. If the normal processes
dominate the phonon distribution (τ̃n � τr), this is a definite improvement over previous
approaches which only make allowances for small deviations in the heat flux from zero; see
especially [22].

We now mention the following. In extended hydrodynamic approaches, there is a
difficult question that needs to be answered when addressing how gas flows should be
computed: what are the boundary conditions to use with the extended systems of evolution
equations? If one considers the shock problem or the problem of waves of weak discontinuity
propagating into a region in equilibrium, the issue of determining a suitable set of boundary
conditions is circumvented, in the sense that the boundary conditions are associated with
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the equilibrium distribution function. In other cases, however, one needs a criterion in
order to prescribe the so-called non-controllable boundary data. For stationary processes, an
interesting attempt to overcome this problem was proposed by Struchtrup and Weiss [28],
who postulated that the non-controllable data are the ones for which the L∞ norm of the
entropy production is minimal. Their postulate became known as the minimax principle.
Although this principle is capable of determining the missing boundary conditions, it leads to
temperature fields that run counter to physical intuition and, more importantly, have never been
observed.

A second effort in the analysis of a boundary-value problem was the study, by Liu et al
[29], of one-dimensional heat conduction in the 14-moment classical system. They recalled
the iterative procedure for the moment equations invented by Maxwell, and employed an
iteration of a similar spirit. Iterated values for a physically non-controllable boundary value
were calculated by requiring that, in each iterative step, the approximate solution is close to
the exact one. A third approach was proposed by Brini and Ruggeri [30] which consists in
utilizing the concept of a critical derivative. Restricting attention to system (2.25), there is
still uncertainty as to which of the three, if any, approaches presented above is the best for our
model. As a matter of fact, this diversity of proposals emphasizes the need of further discussion
and additional search for a comprehensive and satisfactory formulation of the boundary-value
problem.

Even for well-posed boundary conditions, complexity of the moment flux and collisional
terms makes system (2.25) hardly solvable by purely analytical means. Thus, it is clear that
the appropriate numerical methods must be proposed. The hyperbolic structure of the moment
equations evident in our analysis lends itself to solution techniques that take advantage of the
wave-like nature of the transport phenomena. Such techniques require the development of
good approximate Riemann solvers. In the dissertation by Brown [31], a Roe-type approximate
Riemann solver for the 35-moment classical model was presented. We expect that many of the
ideas discussed in [31], when appropriately modified, will be useful in the study of numerical
schemes for system (2.25).

Also, a natural question to be addressed is whether system (2.25) implies a new balance
law, interpreted as the equation of balance of entropy. Consequently, the new density associated
with this equation is the entropy density, which is a function of the original gas-state variables.
In the method of maximum entropy, one knows fully well that the additional balance law
can be derived rather easily by rearranging the system of evolution equations into symmetric
conservative form (see, e.g., [32]). For system (2.25), the question is open and any result
on the existence of the formal (i.e., mathematical) entropy density would be interesting.
Of course, this formal density, if it exists at all, must be different from the approximate
kinetic-theory density constructed in section 3.3. Nevertheless, we believe that such a result
could facilitate an analysis of the waves of strong discontinuity. As regards the effective
strategy for finding an expression for the mathematical entropy, this goal can be achieved by
requiring that system (2.25) admits the Hessian matrix as a symmetrizer. The corresponding
formal entropies are then determined by direct integration of the admissible Hessian
symmetrizers [12].
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Appendix. Proof of the inequality Y < 0

Using (2.4a), (2.4c) and (2.22), the quantity Y can be written in the form

Y = 9(1 − u)4(�1 − �2)(�1 + �2)

u5(u2 − 2u + 5)E2
, (A.1)

where

�1 := 3(u2 − 2u + 5)R − 15 + u, (A.2a)
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. (A.2b)

With the aid of

R =
∞∑

n=0

1

2n + 1
un, (A.3)

we obtain for �1

�1 = 12u2
∞∑

n=0

4n2 + 8n + 5

(2n + 1)(2n + 3)(2n + 5)
un. (A.4)

For �2, we have

�2 = 4u2
∞∑

n=0

(2n − 1)!!

(2n)!!
un, (A.5)

where

(2n − 1)!! := 1 · 3 · 5 · · · (2n − 1), (A.6a)

(2n)!! := 2 · 4 · 6 · · · (2n), (A.6b)

(−1)!! := 1, (0)!! := 1. (A.6c)

Consequently, it is clear that

1

u3
(�1 − �2) < 0,

1

u2
(�1 + �2) > 0. (A.7)

Since u2 − 2u + 5 > 0 and E > 0, this immediately proves the inequality Y < 0.
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